Quadrature Demod: Difference between revisions
(Created page with "Category:Block Docs Category:Stub Docs This is the template for the "Page-per-block Docs". This first section should describe what the block...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[Category:Block Docs]] | [[Category:Block Docs]] | ||
This can be used to demod FM, FSK, GMSK, etc. The input is complex | |||
This | baseband, output is the signal frequency in relation to the sample | ||
rate, multiplied with the gain. | |||
Mathematically, this block calculates the product of the one-sample | |||
delayed input and the conjugate undelayed signal, and then calculates | |||
the argument of the resulting complex number: | |||
y[n] = \mathrm{arg}\left(x[n] \, \bar x [n-1]\right) | |||
Let x be a complex sinusoid with amplitude A>0, (absolute) | |||
frequency f\in\mathbb R and phase \phi_0\in[0;2\pi] sampled at | |||
f_s>0 so, without loss of generality, | |||
x[n]= A e^{j2\pi( \frac f{f_s} n + \phi_0)}\f | |||
then | |||
y[n] = \mathrm{arg}\left(A e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} \overline{A e^{j2\pi( \frac f{f_s} (n-1) + \phi_0)}}\right)\ = \mathrm{arg}\left(A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} e^{-j2\pi( \frac f{f_s} (n-1) + \phi_0)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0 - \frac f{f_s} (n-1) - \phi_0\right)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n - \frac f{f_s} (n-1)\right)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} \left(n-(n-1)\right)\right)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi \frac f{f_s}}\right) \intertext{$A$ is real, so is $A^2$ and hence only \textit{scales}, therefore $\mathrm{arg}(\cdot)$ is invariant:} = \mathrm{arg}\left(e^{j2\pi \frac f{f_s}}\right)\= \frac f{f_s}\\ | |||
A rendered version of the equations is available there: [https://www.gnuradio.org/doc/doxygen/classgr_1_1analog_1_1quadrature__demod__cf.html] | |||
== Parameters == | == Parameters == | ||
; | ; Gain | ||
: | : Gain setting to adjust the output amplitude. Set based on converting the phase difference between samples to a nominal output value. | ||
== Example Flowgraph == | == Example Flowgraph == | ||
Line 21: | Line 34: | ||
; C++ files | ; C++ files | ||
: [https://github.com/gnuradio/gnuradio | : [https://github.com/gnuradio/gnuradio/blob/master/gr-analog/lib/quadrature_demod_cf_impl.cc] | ||
; Header files | ; Header files | ||
: [https://github.com/gnuradio/gnuradio | : [https://github.com/gnuradio/gnuradio/blob/master/gr-analog/lib/quadrature_demod_cf_impl.h] | ||
; Public header files | ; Public header files | ||
: [https://github.com/gnuradio/gnuradio | : [https://github.com/gnuradio/gnuradio/blob/master/gr-analog/include/gnuradio/analog/quadrature_demod_cf.h] | ||
; Block definition | ; Block definition | ||
: [https://github.com/gnuradio/gnuradio | : [https://github.com/gnuradio/gnuradio/blob/master/gr-analog/grc/analog_quadrature_demod_cf.block.yml] |
Revision as of 14:08, 28 August 2019
This can be used to demod FM, FSK, GMSK, etc. The input is complex baseband, output is the signal frequency in relation to the sample rate, multiplied with the gain.
Mathematically, this block calculates the product of the one-sample delayed input and the conjugate undelayed signal, and then calculates the argument of the resulting complex number:
y[n] = \mathrm{arg}\left(x[n] \, \bar x [n-1]\right)
Let x be a complex sinusoid with amplitude A>0, (absolute) frequency f\in\mathbb R and phase \phi_0\in[0;2\pi] sampled at f_s>0 so, without loss of generality,
x[n]= A e^{j2\pi( \frac f{f_s} n + \phi_0)}\f
then
y[n] = \mathrm{arg}\left(A e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} \overline{A e^{j2\pi( \frac f{f_s} (n-1) + \phi_0)}}\right)\ = \mathrm{arg}\left(A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0\right)} e^{-j2\pi( \frac f{f_s} (n-1) + \phi_0)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n + \phi_0 - \frac f{f_s} (n-1) - \phi_0\right)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} n - \frac f{f_s} (n-1)\right)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi\left( \frac f{f_s} \left(n-(n-1)\right)\right)}\right)\ = \mathrm{arg}\left( A^2 e^{j2\pi \frac f{f_s}}\right) \intertext{$A$ is real, so is $A^2$ and hence only \textit{scales}, therefore $\mathrm{arg}(\cdot)$ is invariant:} = \mathrm{arg}\left(e^{j2\pi \frac f{f_s}}\right)\= \frac f{f_s}\\
A rendered version of the equations is available there: [1]
Parameters
- Gain
- Gain setting to adjust the output amplitude. Set based on converting the phase difference between samples to a nominal output value.
Example Flowgraph
Insert description of flowgraph here, then show a screenshot of the flowgraph and the output if there is an interesting GUI. Currently we have no standard method of uploading the actual flowgraph to the wiki or git repo, unfortunately. The plan is to have an example flowgraph showing how the block might be used, for every block, and the flowgraphs will live in the git repo.
Source Files
- C++ files
- [2]
- Header files
- [3]
- Public header files
- [4]
- Block definition
- [5]